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Abstract

Successful approachesto devel oping knowledge acquisition
toolsuse expectationsof what the user hasto add or may want
to add, based on how new knowledgefitswithin aknowledge
basethat already exists. When aknowledgebaseisfirst cre-
ated or undergoes significant extensions and changes, these
tools cannot provide much support. This paper presents an
approach to creating expectations when a new knowledge
base is built, and describes a knowledge acquisition tool
that we implemented using this approach that supports users
in creating problem-solving knowledge. As the knowledge
base grows, the knowledge acquisition tool derives more
frequent and more reliable expectations that result from en-
forcing constraints in the knowledge representation system,
looking for missing pieces of knowledge in the knowledge
base, and working out incrementally the inter-dependencies
among the different components of the knowledgebase. Our
preliminary evaluations show a thirty percent time savings
during knowledge acquisition. Moreover, by providing tools
to support the initial phases of knowledge base develop-
ment, many mistakes are detected early on and even avoided
altogether. We believe that our approach contributesto im-
proving the quality of the knowledgeacquisition processand
of the resulting knowledge-based systems aswell.

Introduction

Knowledge acquisition (KA) is recognized as an impor-
tant research area for making knowledge-based Al suc-
ceed in practice (Feigenbaum 1993). An approach that
has been very effective to devel op tool sthat acquire knowl-
edge from users is to use expectations of what users have
to add or may want to add next (Eriksson et al. 1995;
Birmingham & Klinker 1993; Marcus & McDermott 1989;
Davis 1979). Most of these expectations are derived
from the inter-dependencies among the components in a
knowledge-base system (KBS). EXPECT (Gil & Mez
1996; Swartout & Gil 1995) and Protégé-Il (Eriksson et
al. 1995) use dependenci es between factual knowledge and
problem-solving methods to find related pieces of knowl-
edge in their KBS and create expectations from them. To
give an example of these expectations, suppose that the
user is building a KBS for a configuration task that finds
constraint violations and then applies fixes to them. When
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the user defines a new constraint, the KA tool has the ex-
pectation that the user should specify possible fixes for
cases where the constraint is violated, and helps the user
do so. These tools can successfully build expectations be-
cause there is aready a body of knowledge where the new
knowledge added by the user must fit in. In the configura:
tion example, there would be problem solving knowledge
about how to solve configuration tasks (how to describe
a configuration, what is a constraint, what is the relation
between a constraint and a fix, how to apply a fix, etc.)
However, when a new knowledge base (KB) is created (or
when an existing oneissignificantly extended) thereislittle
or no pre-existing knowledge in the system to draw from.
How can aKA tool support the user in creating alarge body
of new knowledge? Are there any sources of expectations
that the KA tool can exploit?

Thispaper describes our approach to devel oping KA tools
that derive expectationsfrom the KB in order to guide users
during KB creation. Through an analysisof theKB crestion
task, we were ableto detect several sourcesfor such expec-
tations. The expectations result from enforcing constraints
intheknowledgerepresentation system, lookingfor missing
pieces of knowledgein the KB, and working out incremen-
taly the inter-dependencies among the different compo-
nents of the KB. As the user defines new KB elements (i.e,
new concepts, new relations, new problem-solving knowl-
edge), the KA tool can form increasingly more frequent
and more reliable expectations. We implemented a KA
tool called EMeD that uses these sources of expectationsto
support users in adding problem-solving knowledge. Our
preliminary evaluation shows an average time savings of
30% to enter the new knowledge. We believe it will be
even higher for users who are not experienced knowledge
engineers.

The paper begins by describing why KB crestion is hard.
Then we present our approach, and describe the KA tool
that we implemented. Finally, we show theresults from our
experiments with severa subjects, and discuss our conclu-
sions and directionsfor future work.

Creating Knowledge Bases

There are severa reasons why creating aknowledge baseis
hard:



¢ Developers haveto design and create a large number
of KB elements. KB devel opershaveto turn models and
abstractions about a task domain into individual KB ele-
ments. Whenthey are creating an individual KB el ement,
itishard to remember thedetailsof al the definitionsthat
have aready been created. It is aso hard to anticipate
all the details of the definitionsthat remain to be worked
out and implemented. As a result, many of these KB
elements are not compl etely flawless from the beginning,
and they tend to generate lots of errorsthat have unfore-
seen side effects. Also, until a KB element is debugged
and freed from these errors, the expectations crested from
it may not be very reliable.

e Therearemany missing piecesof knowledgeat agiven
time. Even if the devel opers understand the domain very
well, it is hard to picture how all the knowledge should
be expressed correctly. As some part of the knowledge
is represented, there will be many missing pieces that
should be completed. It is hard for KB developers to
keep track of what pieces are still missing, and to take
them into account as they are creating new el ements.

e It is hard to predict what pieces of knowledge are
related and how. Since there is not a working system
yet, many of the relationships between the individual
pieces are in the mind of the KB devel oper and have not
been captured or correctly expressed in the KB.

e There can bemany inconsistenciesamong related KB
elements that are newly defined. It is hard for KB
developers to detect al the possible conflicts among the
definitionsthat they create. Oftentimesthey are detected
through the painful process of trying to run the system
and watching it not work at al. The debugging is done
through aniterativeprocessof running thesystem, failing,
staring at various traces to see what is happening, and
finally finding the cause for the problem.

As intelligent systems operate in real-world, large-scale
knowledge intensive domains, these problems are com-
pounded. Asnew technol ogy enablesthe creation of knowl-
edge bases with thousands and millions of axioms, KB de-
velopers will be faced an increasingly more unmanagesble
and perhapsimpossibletask. Consider an examplefrom our
experience with aWorkaroundsdomain sel ected by DARPA
as one of the challenge problems of the High-Performance
Knowledge Bases program that investigates the devel op-
ment of large-scale knowledge based systems. The task is
to estimate the delay caused to enemy forces when an obsta-
cle is targeted by reasoning about how they could bypass,
breach or improve the obstacle. After severd large ontolo-
gies of terms relevant to battlespace reasoning were built
(military units, engineering assets, transport vehicles, etc.),
wefaced thetask of creating the problem solving knowledge
base that used al those terms and facts to actually estimate
theworkaroundtime. We built eighty-four problem-solving
methods from scratch on top of several thousand defined
concepts, and it took two intense monthsto put together al
the pieces. Figure 1 shows some examples of our methods.
Each method has a capability that describes what goals it

(define-method M1

(documentation “In order to estimate the time that it takes to narrow
a gap with a bulldozer, combine the total dirt volume to be moved
and the standard earthmoving rate.”)

(capability (estimate (obj (?t is (spec-of time)))
(for (?s is (inst-of narrow-gap)))))
(result-type (inst-of number))
(body (divide (obj (find (obj (spec-of dirt-volume))
(for ?s)))
(by (find (obj (spec-of standard-bulldozing-rate))
(for ?s))))

(define-method M2

(documentation “The amount of dirt that needs to be moved in any
workaround step that involves moving dirt (such as narrowing a gap
with a bulldozer) is the value of the role earth-volume for that step.”)

(capability (find (obj (?v is (spec-of dirt-volume)))
(for (?s is (inst-of move-earth)))))

(result-type (inst-of number))

(body (earth-volume ?s)))

(define-method M3

(documentation “The standard bulldozing rate for a workaround step
that involves earthmoving is the combined bulldozing rate of the doz-
ers specified as dozer-of of the step.”)

(capability (find (obj (?r is (spec-of standard-bulldozing-rate)))
(for (?s is (inst-of bulldoze-region)))))
(result-type (inst-of number))
(body (find (obj (spec-of standard-bulldozing-rate))
(of (dozer-of ?s))))

Figure 1: Methods in a simplified workaround generation

domain.

can achieve, a method body that specifies the procedure to
achieve that capability (including invoking subgoals to be

resolved with other methods, retrieving values of roles, and

combining resultsthrough control constructs such as condi-
tional expressions), and aresult type that specifies the kind
of result that the body is expected to return (more details of
thelr syntax are discussed below). Creating each method so
that it would use appropriate terms from ontol ogieswas our
first challenge. Once created, it was hard to understand how
the methods were related to each other, especialy when
these interdependencies result from the definitions in the
ontologies. Despite the modular, hierarchical design of our
system, smadll errors and local inconsistencies tend to blend
together to produceinexplicableresults making it very hard
tofind and tofix the source of the problems. Although some

portions of the knowledge base could be examined locally
by testing subproblems, we often found ourselves working
all the way back to our own documentation and notes to
understand what was happening in the system.

In summary, it is hard for KB developers to keep in
mind al the definitions that they create and to work out

their interdependencies correctly. KB developers generate

and resolve many errors while they build a large body of
knowledge. Our goal isto develop KA toolsthat help users
resolve these errors and, moreimportantly, help them avoid
making the errorsin thefirst place.



Approach

We identified several sources of expectationsthat KA tools
can exploitin order to guide usersin creating a new know!-
edge base. We explain our approach in terms of the prob-
lems and examples described in the previous section.

o Difficulty in designing and creating many KB elements
= Guide the users to avoid errors and look up related
KB elements.

First, each time a KB element is created by a user, we
can check the dependencies within the element and find
any potentia errors based on the given representation
language. For example, when undefined variables are
used in method body, thiswill create an expectation that
the user needs to define them in the method.

In our example, Method M1 has two variables, ?t and ?s,
defined in its capability, and if the method body uses a
different variable, the system can send a warning mes-
sage to the user. Likewise, if a concept definition says
that a role can have a most one value but also at least
two values, then thisloca inconsistency can be brought
up. By isolating these local errors and filtering them out
earlier in the KB development process, we can prevent
them from propagating to other elementsin the system.

However small the current KB is, if there are KB ele-
ments that could be similar to the one being built, then
they can be looked up to develop expectations on the
form of new KB element. For example, devel opers may
want to find existing KB elements that are related with
particular terms or concepts based on the underlying on-
tology. If thereisa concept hierarchy, it will be possible
to retrieve KB elements that refer to superconcepts, sub-
concepts, or given concepts and let the user devel op ex-
pectationsonthecurrent KB element based on related KB
elements. For example, if adevel oper wantstofindall the
methods rel ated to moving earth, the system can find the
above methods, because narrow-gap and bulldoze-region
are subtypes of move-earth. When the user adds a new
method about moving earth to fill a crater, then it may be
useful to take them into account. Specifically, M1 can
generate expectations on how a method for estimating
timeto fill acrater should be built.

e Many pieces of knowledge are missing at a given time;
= Compute surface relationshipsamong KB elementsto
find incompl ete pi eces and create expectationsfromthem

TheKA tool can predict rel ationshipsamong the methods
based on what the capability of amethod can achieve and
the subgoals in the bodies of other methods. For exam-
ple, given the three methodsin Figure 1, method M1 can
use M2 and M3 for itstwo subgoas— find dirt volume
and find bulldozing rate. These relationships can creste
method-submethod trees that are useful to predict how
methods will be used in problem solving. In the process
of building thiskind of structure, the system can expose
missing pieces in putting the methods together. For ex-
ample, unmatched subgoals can be listed by collecting
all the subgoals in a method that cannot be achieved by
any of the dready defined methods. The user will be

reminded to define the missing methods and shown the
subgoal sthat they are supposed to match. InFigurel, if a
method for the subgoal of method M 3 to find the standard
bulldozing rate of given dozer is not defined yet, the user
isasked to define one and may create onethat only works
for military dozer or any dozer in general.

Similarly, if aconcept isused in aKB element definition
but not defined yet, then the system will detect the unde-
fined concept. Instead of simply rej ecting such definition,
if the developer till wants to use the term, the KA tool
can collect undefined concepts and create an expectation
that the developer (or other KB developers) will define
the term later.

Difficulty in predicting what pieces of knowledge are re-
lated and how =- Use surface relationshipsto find unused
KB elements and propose potential uses of the elements

The above surface relationships among KB e ements,
such as method-submethod rel ationship can a so help de-
tect unused KB elements. If amethod isnot used by any
other methods, then it can be collected into an unused
method list. In addition to finding such unused methods,
the KA tool can propose potential uses of it. For exam-
ple, if the capability of a method is similar to one of the
unmatched subgoals (e.g., same goa name and similar
parameter types), then apotentia user of the method will
be the method that has the unmatched goal .

In the same way, concepts created but not referred to
in any other definitions can be collected into an unused
concept list. The KA tool can develop expectations of
KB elementsthat will usethe definitionsor perhaps even
deleting these concepts if they end up being unnecessary.

Inconsistencies among newly defined KB elements =
Help users find them early and propose fixes

The KA tool can check if the user-defined result type
of a method is inconsistent with what the method body
returns based on the results of the subgoals. If there
are inconsistent definitions, the system will develop an
expectation that user has to modify either the current
method or the methods that achieve the subgoals.

Also, for concept definitions, there can be cases where a
user wants to retrieve a role value of a concept, but the
roleis not defined for the concept. In additionto simply
detecting such a problem, the system may propose to
definetherolefor the concept or to change the method to
refer to adifferent but related concept that does have that
role.

Finally, once the KA tool indicates that there are no er-
rors, inconsistencies, or missing knowledge, the user can
run the inference engine, exposing additiona errorsin
solving a given problem or subproblems. The errors are
caused by particular interdependencies among KB ee-
mentsthat arise in specific contexts. If most of the errors
are detected by the above analyses, users should see sig-
nificantly fewer errorsat this stage.

Notice that as the KB is more complete and more error-

free it becomes a stronger basis for the KA tool in creating
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expectationsto guide the user.

EMeD: Expect Method Developer

We have concentrated our initial effort in developing a KA
tool that uses these kinds of expectationsto support usersto
devel op problem solving methods. Webuilt aK A tool called
EMeD (EXPECT Method Developer) for the EXPECT
framework for knowledge-based systems (Gil & Melz 1996;
Gil 1994; Swartout & Gil 1995).

An EXPECT knowledge base is composed of factua
knowledge and of problem-solving knowledge. The factual
knowledge includes concepts, relations, and instances in
Loom (Macgregor 1990), a knowledge representation sys-
tem of theKL-onefamily. The problem-solving knowledge
is represented as a set of problem-solving methods such as
those shownin Figure 1. Asdescribed earlier, each method
has a capability, a result type, and a method body. Within
the capability and body sections, each goa is expressed as
a goa name followed by a set of parameters. Also, each
parameter consists of aparameter name and atype.

Figure 2 shows the method editor in the EMeD user in-
terface. Thereisalist of current methods and buttons for
editing methods. Users can add, delete, or modify the meth-
ods using these buttons. (Other buttons and windows will
be explained later.) Users often create new methodsthat are
similar to existing ones so the tool has a copy/edit facility.

Every time a new method is defined, the method is
checked for possibleparsing errorsbased on themethod rep-
resentation language. If there are interdependencies among
the subparts of a method, they are aso used in detecting
errors. For example, if avariableisused but not defined for
the method, the same variabl e is defined more than once, or

e
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there are unused variabl es, the system will produce warning
messages. Also, if there were terms (concepts, relations,
or instances) used in a method but not defined in the KB
yet, error messages will be sent to the devel oper. When the
term definition is obvious, as the verbs used in capabilities,
a definition will be proposed by the tool. In Figure 2, the
small panel in the bottom left corner with the label “EX-
PECT message” displays these errors. Using this method
definition checker, users can detect the local errors earlier,
separating them from other types of errors.

Users can find existing methods related with particular
terms in concepts, relations or instances through the Loom
ontology. The KA tool can retrieve methods that refer to
subconcepts, superconcepts, or a given concept and let the
user creste new methods based on related methods. Fig-
ure 3 shows the result from retrieving methods about mov-
ing earth. The system was able to find all the methods
in Figure 1, because narrow-gap and bulldoze-region are
subconcepts of move-earth.

Figure 4 shows relationships among methods based on
how the subgoas of a method can be achieved by other
methods. The trees built from this are called method sub-
method relation trees. There can be multipletrees growing
in the process of building a number of methods when they
are not fully connected. These method-relation trees are
incomplete problem-solving trees to achieve some inter-
mediate subgoa. The (sub)trees should be eventually put
together to build a problem-solving tree for the whol e prob-
lem. For example, given these three methods, the system
can build a method-relation tree, as shown in Figure 4.

Method sub-method relation trees can be used to detect
undefined methods based on the subgoals in a method that
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are not achieved by any existing methods. These can be
collected and users can be informed of them. If there
are congtraints imposed on the methods to be built, such
as the expectations coming from the methods that invoke
them, then these can be @ so incorporated. For example, the
method to find the standard bulldozing rate of a step cals
a subgoa to find the standard bulldozing rate of a given
dozer, which is undefined yet. Since the result type of the
given method is a number, the system can expect (through
an interdependency analysis) the same result type for the
undefined method. Figure 5 (bottom window) shows the
capability that the tool proposes for the currently undefined
method — a method to find standard bulldozing rate of a
given military dozer.

In the process of building thismethod-relation tree, there
can be subgoa's whose parameters are not fully specified
because their arguments are subgoal s that are not achieved
by any of existing methods. For example, given the method
to estimate the timeto narrow gap (the first method in Fig-
ure 1) only (i.e, if M2 and M3 were missing), its subgoal
"divide' hastwo parameters with parameter names’ obj’ and
"by’. Because theargumentsto dividearethe subgoals’ find
dirt-volume of the step’ and ' find standard-bulldozing-rate
for the step’ whose methods would be undefined, the tool
could not fully state the goa. Thiswould be represented as
divide (obj UNDEFINED) (by UNDEFINED)'. However,
one of the built-in methods in EXPECT has capability of
"divide (obj Number) (by Number)’, and the tool creates
a link between this and the subgoa as a potential inter-
dependency. Users can use this hint to make the potential
interdependency area oneor create other appropriate meth-
ods.

There are other relationships among problem-solving
methods based on their capabilities that the KA tool can
exploit. For example, a hierarchy of the goals based on the
subsumption relations of their goal names and their argu-
ments can be created. Inthehierarchy, if agoal isto builda
military bridge, and another goal isto build akind of mili-
tary bridge, such asan AVLB, then the former subsumesthe
latter. This dependency among the goa descriptions of the
methods (called capability tree) is useful in that it allows
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the user to understand the kinds of sub-problemsthe current
set of methods can solve. To make their relationships more
understandable, EMeD al so computes potentia capabilities.
For example if there are super-concepts defined for the pa
rameters of a capability, a capability with these conceptsis
created as a parent of the capability. The capability treefor
the given example methodsisin Figure 5 (top window).

Finally, there are user-expected dependencies among the
problem-solving methods, which are usually represented in
comments or by grouping of methodsin thefileswhere they
are built. They do not directly affect the system, but they
often become the user’s own instrument to understand the
structure of what they arebuilding. Also, it can betheuser’s
own interpretation of additional interdependencies among
methods. EMeD provides a way of organizing methods
into hierarchies and groups, and allows users to provide
documentation for the methods. In Figure 2, the “Move or
Organize Methods’ buttons support these functions.

In addition, EMeD can use the expectations derived from
running the problem solver, detecting problems that arise
while attempting to build a complete problem-solvingtree.

Preliminary Evaluations

We performed a preliminary evaluation of our approach by
comparing the performance of four subjectsin two different
KA tasks from a Workarounds domain. Each subject did
one of the tasks with EMeD and the other task using a
version of EMeD that only alowed them to edit methods
(the buttons to add, delete, or modify methods), but did
not have any additiona support from EMeD. Before the
experiment, each subject was given atutorial of the tools
with simpler scenarios. The scenarios and tools were used
in different orders to reduce the influences from familiarity
with tools or fatigue. Each experiment took severa hours,
including the tutorial, and we took detailed transcripts to
record actions performed by the subjects. The subjects had
some previous experience in building EXPECT knowledge



Results Total Time(min) Number of | Time/Method (min)
Methods Added

Without EMeD 218 25 8.72

With EMeD 153 24 6.38

Averagetimesavings: 30 %

Table 1: Resultsfrom experiments with subjects.

| Functionality || Number of Times Used |
Undefined Methods 23
Editor Error Message 17
Method Sub-method Relation Tree 7
Capability Tree 10
Search Methods 1
Method Organizer 2
Problem Solving Agenda 5

Table 2: Number of times that the different components of
EMeD were used.

bases, but not with EMeD.

In Table 1, the totd time is computed by summing the
times with each subject for each tool. The time for each
subject is the time to complete the given task (by creating
a successful problem-solving tree and diminating errors).
EMeD was able to reduce the development timeto 70%
of the time that users needed without it. Subjects built
a comparable number of methods with the different tools.
Note that the subjects were not exposed to the EMeD envi-
ronment before, but were very familiar with the EXPECT
framework. The time savings may be more if the subjects
had more familiarity with EMeD. We had multipletrial ex-
periments with one of the subjects, with dightly different
tasks, and the subject had become more and more skillful,
reducing the time per each action. For these reasons, we
expect that the time reduction with EMeD will be larger
in practice. Also note that there is a practical limit to the
amount of time saved using any KA tool. Thereisasig-
nificant amount of time that users spend doing tasks such
as thinking and typing, where a machine can provide little
help. We would like to measure the improvement over the
time actually doing knowledge input, instead of thetimeto
complete a KA task.

We counted the number of times each component of
EMeD was used during the experiments, as shown in Ta
ble 2. Thelist of undefined methods was most useful (used
23 times to build 24 methods) during the experiment, and
the subjectschecked it a most every timethey created anew
method. The subjects seemed to be comparing what they
expected with thelist created by the KA tool, and built new
methods using the suggestions proposed by thesystem. The
error messages showed after editing each individua method
effectively detected the errors within a method definition,
and was used every time there were local errorsin the defi-
nition.

Users looked at the Method Sub-method Relation Tree

but not as many times as what we expected. The subjects
felt thetree was useful but therewere too many items shown
for each node, making it hard to read. We are planning to
display items selectively, showing the details only when
they are needed. The Capability Tree was often used to find
some capability description of another method needed while
defining amethod body. However, the hierarchical structure
was not so meaningful to the subjects, since sometimes
people choose arbitrary concepts (compute, estimate, etc.)
to describe their capabilities. We are planning to develop a
better way of organizing the methods based on what tasks
they can achieve.

Search Methods and Method Organizer were used very
little during the experiment. Since the size of the KB was
relatively small (about 3 methods were given in the begin-
ning and 6 methods were built for each task), the subjects
were ableto seethem easily in the editor window. However,
during real KB development, the size of the KB is usualy
much larger, and we expect that they will be more useful in
real settings.

With EMeD, the subjects run the problem solver mostly
to check if they had finished their tasks. EMeD was ableto
find errors earlier and provide guidance on how they may
fix the problem, filtering out most of the errors. Without
EMeD, the subjects run the problem solver to detect errors,
and ended up spending more time to find the sources of
errorsand fix them.

Related Work

There are other KA tools that take advantage of relation-
shipsamong KB elementsto derive expectations. Teireisias
(Davis 1979) uses rule models to capture relationships
among the rules based on their general structure and guide
the user in following that general structure when a new
rule is added that fits a model. Some of the capabilities
of EMeD are similar in spirit to the rule model (e.g., the
method capability tree), and are also used in EMeD to
help devel opers understand potential dependencies among
the KB dements. Other KA tools (Eriksson et al. 1995;
Birmingham & Klinker 1993; Marcus & McDermott 1989)
also use dependencies between factua knowledge and
problem-solving methods to guide users during knowledge
acquisition. These tools help users to populate and extend
a system that already has a significant body of knowledge,
but they are not designed to help users in the initial stages
of KB development. More importantly, these toolsare built
to acquire factual domain knowledge and assume that users
cannot change or add problem-solving knowledge. In this
sense, EMeD is unique because it guides users in adding
new problem-solving methods.

In the field of software engineering, it has been recog-
nized that it is generally better to focus on improving the
process of software development rather than on the output
program itself (Dunn 1994). Our approach embraces this
view and triesto improvethe initia phases of KB develop-
ment. Some previous work on using formal languages to
specify knowledge bases (Fensel, Angele, & Studer 1998)
isinspired by software engineering approaches. Thiswork



provides a framework for users to model and capture the
initial requirements of the system, and requirethat usersare
experienced with formal logic. Our approach is comple-
mentary in that it addresses the stage of implementing the
knowledge-based system, and we believe that our formal-
ism ismore accessible to usersthat have no formal training.
Other approaches (Wielinga, Schreiber, & Breuker 1992;
Gaines & Shaw 1993) support usersin the initial stages of
development by providing a methodology that can be fol-
lowed systematically to elicit knowledge from experts and
to designthe new system. These methodol ogiescan be used
in combination with our approach.

There is dso related research in developing tools to
help users build ontol ogies (Fikes, Farquhar, & Rice 1997;
Terveen & Wroblewski 1990; Clark & Porter 1997). Un-
like our work, these tools do not tackle the issue of using
these ontologies within a problem-solving context. Many
of theresearch contributionsin thesetool sconcern thereuse
of ontologiesfor new problems, collaborativeissuesin de-
veloping knowledge bases, and the visualization of large
ontologies. We believe that integrating our approach with
these capabilities will result in improved environments to
support KB creation.

Conclusion

We analyzed the process of KB development to support
KB creation and KB extension, and found a set of expecta
tions to help KA tools guide users during the development
process. We have classified the sources of errors in the
KB development process based on their characteristics, and
found ways to prevent, detect, and fix errors earlier. These
expectations were derived from the dependencies among
KB eements. Although EMeD aims to provide support for
KB crestion, its functionality is also useful for modifying
existing knowledge or populating a KB with instances.

We are now extending the EMeD framework to be able
to derive expectationsin solving particular problems. Cur-
rently EMeD computes rel ationship among the KB compo-
nentsregardless of the context. Depending onwhat problem
episodewe are solving, there ationshipsmay show different
patterns, since the problem-solving methods may become
specialized.

Inour initial evaluations, EMeD was ableto provide use-
ful guidance to users reducing KB development time by
30%. We expect that EMeD will be even more beneficial
for domain experts who don’t have much KA experience.
EMeD also opensthe door to collaborativetoolsfor knowl-
edge acquisition, because it captureswhat KA tasksremain
to be done and that may be done by other users.
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