
Deriving Expectations to Guide Knowledge Base Creation

Jihie Kim and Yolanda Gil
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, U.S.A.
jihie@isi.edu, gil@isi.edu

In Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99)

Abstract

Successful approaches to developing knowledge acquisition
tools use expectationsof what the user has to add or may want
to add, based on how new knowledge fits within a knowledge
base that already exists. When a knowledge base is first cre-
ated or undergoes significant extensions and changes, these
tools cannot provide much support. This paper presents an
approach to creating expectations when a new knowledge
base is built, and describes a knowledge acquisition tool
that we implemented using this approach that supports users
in creating problem-solving knowledge. As the knowledge
base grows, the knowledge acquisition tool derives more
frequent and more reliable expectations that result from en-
forcing constraints in the knowledge representation system,
looking for missing pieces of knowledge in the knowledge
base, and working out incrementally the inter-dependencies
among the different components of the knowledge base. Our
preliminary evaluations show a thirty percent time savings
during knowledge acquisition. Moreover, by providing tools
to support the initial phases of knowledge base develop-
ment, many mistakes are detected early on and even avoided
altogether. We believe that our approach contributes to im-
proving the quality of the knowledge acquisition process and
of the resulting knowledge-based systems as well.

Introduction
Knowledge acquisition (KA) is recognized as an impor-
tant research area for making knowledge-based AI suc-
ceed in practice (Feigenbaum 1993). An approach that
has been very effective to develop tools that acquire knowl-
edge from users is to use expectations of what users have
to add or may want to add next (Eriksson et al. 1995;
Birmingham & Klinker 1993; Marcus & McDermott 1989;
Davis 1979). Most of these expectations are derived
from the inter-dependencies among the components in a
knowledge-base system (KBS). EXPECT (Gil & Melz
1996; Swartout & Gil 1995) and Protégé-II (Eriksson et
al. 1995) use dependencies between factual knowledge and
problem-solving methods to find related pieces of knowl-
edge in their KBS and create expectations from them. To
give an example of these expectations, suppose that the
user is building a KBS for a configuration task that finds
constraint violations and then applies fixes to them. When

Copyright c
1999, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the user defines a new constraint, the KA tool has the ex-
pectation that the user should specify possible fixes for
cases where the constraint is violated, and helps the user
do so. These tools can successfully build expectations be-
cause there is already a body of knowledge where the new
knowledge added by the user must fit in. In the configura-
tion example, there would be problem solving knowledge
about how to solve configuration tasks (how to describe
a configuration, what is a constraint, what is the relation
between a constraint and a fix, how to apply a fix, etc.)
However, when a new knowledge base (KB) is created (or
when an existing one is significantly extended) there is little
or no pre-existing knowledge in the system to draw from.
How can a KA tool support the user in creating a large body
of new knowledge? Are there any sources of expectations
that the KA tool can exploit?

This paper describes our approach to developing KA tools
that derive expectations from the KB in order to guide users
during KB creation. Through an analysis of the KB creation
task, we were able to detect several sources for such expec-
tations. The expectations result from enforcing constraints
in the knowledge representation system, looking for missing
pieces of knowledge in the KB, and working out incremen-
tally the inter-dependencies among the different compo-
nents of the KB. As the user defines new KB elements (i.e.,
new concepts, new relations, new problem-solving knowl-
edge), the KA tool can form increasingly more frequent
and more reliable expectations. We implemented a KA
tool called EMeD that uses these sources of expectations to
support users in adding problem-solving knowledge. Our
preliminary evaluation shows an average time savings of
30% to enter the new knowledge. We believe it will be
even higher for users who are not experienced knowledge
engineers.

The paper begins by describing why KB creation is hard.
Then we present our approach, and describe the KA tool
that we implemented. Finally, we show the results from our
experiments with several subjects, and discuss our conclu-
sions and directions for future work.

Creating Knowledge Bases
There are several reasons why creating a knowledge base is
hard:

� Developers have to design and create a large number
of KB elements. KB developers have to turn models and
abstractions about a task domain into individual KB ele-
ments. When they are creating an individual KB element,
it is hard to remember the details of all the definitions that
have already been created. It is also hard to anticipate
all the details of the definitions that remain to be worked
out and implemented. As a result, many of these KB
elements are not completely flawless from the beginning,
and they tend to generate lots of errors that have unfore-
seen side effects. Also, until a KB element is debugged
and freed from these errors, the expectations created from
it may not be very reliable.

� There are many missing pieces of knowledge at a given
time. Even if the developers understand the domain very
well, it is hard to picture how all the knowledge should
be expressed correctly. As some part of the knowledge
is represented, there will be many missing pieces that
should be completed. It is hard for KB developers to
keep track of what pieces are still missing, and to take
them into account as they are creating new elements.

� It is hard to predict what pieces of knowledge are
related and how. Since there is not a working system
yet, many of the relationships between the individual
pieces are in the mind of the KB developer and have not
been captured or correctly expressed in the KB.

� There can be many inconsistencies among related KB
elements that are newly defined. It is hard for KB
developers to detect all the possible conflicts among the
definitions that they create. Often times they are detected
through the painful process of trying to run the system
and watching it not work at all. The debugging is done
through an iterative process of running the system, failing,
staring at various traces to see what is happening, and
finally finding the cause for the problem.

As intelligent systems operate in real-world, large-scale
knowledge intensive domains, these problems are com-
pounded. As new technology enables the creation of knowl-
edge bases with thousands and millions of axioms, KB de-
velopers will be faced an increasingly more unmanageable
and perhaps impossible task. Consider an example from our
experience with a Workaroundsdomain selected by DARPA
as one of the challenge problems of the High-Performance
Knowledge Bases program that investigates the develop-
ment of large-scale knowledge based systems. The task is
to estimate the delay caused to enemy forces when an obsta-
cle is targeted by reasoning about how they could bypass,
breach or improve the obstacle. After several large ontolo-
gies of terms relevant to battlespace reasoning were built
(military units, engineering assets, transport vehicles, etc.),
we faced the task of creating the problem solving knowledge
base that used all those terms and facts to actually estimate
the workaround time. We built eighty-fourproblem-solving
methods from scratch on top of several thousand defined
concepts, and it took two intense months to put together all
the pieces. Figure 1 shows some examples of our methods.
Each method has a capability that describes what goals it

(define-method M1
(documentation “In order to estimate the time that it takes to narrow
a gap with a bulldozer, combine the total dirt volume to be moved
and the standard earthmoving rate.”)

(capability (estimate (obj (?t is (spec-of time)))
 (for (?s is (inst-of narrow-gap)))))

 (result-type (inst-of number))
 (body (divide (obj (find (obj (spec-of dirt-volume))

 (for ?s)))
 (by (find (obj (spec-of standard-bulldozing-rate))

 (for ?s))))))

(define-method M2
(documentation “The amount of dirt that needs to be moved in any
workaround step that involves moving dirt (such as narrowing a gap
with a bulldozer) is the value of the role earth-volume for that step.”)

(capability (find (obj (?v is (spec-of dirt-volume)))
(for (?s is (inst-of move-earth)))))

 (result-type (inst-of number))
 (body (earth-volume ?s)))

(define-method M3
(documentation “The standard bulldozing rate for a workaround step
that involves earthmoving is the combined bulldozing rate of the doz-
ers specified as dozer-of of the step.”)

(capability (find (obj (?r is (spec-of standard-bulldozing-rate)))
(for (?s is (inst-of bulldoze-region)))))

 (result-type (inst-of number))
 (body (find (obj (spec-of standard-bulldozing-rate))

(of (dozer-of ?s))))

Figure 1: Methods in a simplified workaround generation
domain.

can achieve, a method body that specifies the procedure to
achieve that capability (including invoking subgoals to be
resolved with other methods, retrieving values of roles, and
combining results through control constructs such as condi-
tional expressions), and a result type that specifies the kind
of result that the body is expected to return (more details of
their syntax are discussed below). Creating each method so
that it would use appropriate terms from ontologies was our
first challenge. Once created, it was hard to understand how
the methods were related to each other, especially when
these interdependencies result from the definitions in the
ontologies. Despite the modular, hierarchical design of our
system, small errors and local inconsistencies tend to blend
together to produce inexplicable results making it very hard
to find and to fix the source of the problems. Although some
portions of the knowledge base could be examined locally
by testing subproblems, we often found ourselves working
all the way back to our own documentation and notes to
understand what was happening in the system.

In summary, it is hard for KB developers to keep in
mind all the definitions that they create and to work out
their interdependencies correctly. KB developers generate
and resolve many errors while they build a large body of
knowledge. Our goal is to develop KA tools that help users
resolve these errors and, more importantly, help them avoid
making the errors in the first place.

Approach
We identified several sources of expectations that KA tools
can exploit in order to guide users in creating a new knowl-
edge base. We explain our approach in terms of the prob-
lems and examples described in the previous section.

� Difficulty in designing and creating many KB elements
) Guide the users to avoid errors and look up related
KB elements.
First, each time a KB element is created by a user, we
can check the dependencies within the element and find
any potential errors based on the given representation
language. For example, when undefined variables are
used in method body, this will create an expectation that
the user needs to define them in the method.
In our example, Method M1 has two variables, ?t and ?s,
defined in its capability, and if the method body uses a
different variable, the system can send a warning mes-
sage to the user. Likewise, if a concept definition says
that a role can have at most one value but also at least
two values, then this local inconsistency can be brought
up. By isolating these local errors and filtering them out
earlier in the KB development process, we can prevent
them from propagating to other elements in the system.
However small the current KB is, if there are KB ele-
ments that could be similar to the one being built, then
they can be looked up to develop expectations on the
form of new KB element. For example, developers may
want to find existing KB elements that are related with
particular terms or concepts based on the underlying on-
tology. If there is a concept hierarchy, it will be possible
to retrieve KB elements that refer to superconcepts, sub-
concepts, or given concepts and let the user develop ex-
pectations on the current KB element based on related KB
elements. For example, if a developer wants to find all the
methods related to moving earth, the system can find the
above methods, because narrow-gap and bulldoze-region
are subtypes of move-earth. When the user adds a new
method about moving earth to fill a crater, then it may be
useful to take them into account. Specifically, M1 can
generate expectations on how a method for estimating
time to fill a crater should be built.

� Many pieces of knowledge are missing at a given time:
) Compute surface relationships among KB elements to
find incomplete pieces and create expectations from them
The KA tool can predict relationshipsamong the methods
based on what the capability of a method can achieve and
the subgoals in the bodies of other methods. For exam-
ple, given the three methods in Figure 1, method M1 can
use M2 and M3 for its two subgoals — find dirt volume
and find bulldozing rate. These relationships can create
method-submethod trees that are useful to predict how
methods will be used in problem solving. In the process
of building this kind of structure, the system can expose
missing pieces in putting the methods together. For ex-
ample, unmatched subgoals can be listed by collecting
all the subgoals in a method that cannot be achieved by
any of the already defined methods. The user will be

reminded to define the missing methods and shown the
subgoals that they are supposed to match. In Figure 1, if a
method for the subgoal of method M3 to find the standard
bulldozing rate of given dozer is not defined yet, the user
is asked to define one and may create one that only works
for military dozer or any dozer in general.
Similarly, if a concept is used in a KB element definition
but not defined yet, then the system will detect the unde-
fined concept. Instead of simply rejecting such definition,
if the developer still wants to use the term, the KA tool
can collect undefined concepts and create an expectation
that the developer (or other KB developers) will define
the term later.

� Difficulty in predicting what pieces of knowledge are re-
lated and how)Use surface relationships to find unused
KB elements and propose potential uses of the elements
The above surface relationships among KB elements,
such as method-submethod relationship can also help de-
tect unused KB elements. If a method is not used by any
other methods, then it can be collected into an unused
method list. In addition to finding such unused methods,
the KA tool can propose potential uses of it. For exam-
ple, if the capability of a method is similar to one of the
unmatched subgoals (e.g., same goal name and similar
parameter types), then a potential user of the method will
be the method that has the unmatched goal.
In the same way, concepts created but not referred to
in any other definitions can be collected into an unused
concept list. The KA tool can develop expectations of
KB elements that will use the definitions or perhaps even
deleting these concepts if they end up being unnecessary.

� Inconsistencies among newly defined KB elements)
Help users find them early and propose fixes
The KA tool can check if the user-defined result type
of a method is inconsistent with what the method body
returns based on the results of the subgoals. If there
are inconsistent definitions, the system will develop an
expectation that user has to modify either the current
method or the methods that achieve the subgoals.
Also, for concept definitions, there can be cases where a
user wants to retrieve a role value of a concept, but the
role is not defined for the concept. In addition to simply
detecting such a problem, the system may propose to
define the role for the concept or to change the method to
refer to a different but related concept that does have that
role.
Finally, once the KA tool indicates that there are no er-
rors, inconsistencies, or missing knowledge, the user can
run the inference engine, exposing additional errors in
solving a given problem or subproblems. The errors are
caused by particular interdependencies among KB ele-
ments that arise in specific contexts. If most of the errors
are detected by the above analyses, users should see sig-
nificantly fewer errors at this stage.

Notice that as the KB is more complete and more error-
free it becomes a stronger basis for the KA tool in creating

Figure 2: EMeD Interface (Editor).

expectations to guide the user.

EMeD: Expect Method Developer
We have concentrated our initial effort in developing a KA
tool that uses these kinds of expectations to support users to
develop problem solving methods. We built a KA tool called
EMeD (EXPECT Method Developer) for the EXPECT
framework for knowledge-based systems (Gil & Melz 1996;
Gil 1994; Swartout & Gil 1995).

An EXPECT knowledge base is composed of factual
knowledge and of problem-solving knowledge. The factual
knowledge includes concepts, relations, and instances in
Loom (Macgregor 1990), a knowledge representation sys-
tem of the KL-one family. The problem-solving knowledge
is represented as a set of problem-solving methods such as
those shown in Figure 1. As described earlier, each method
has a capability, a result type, and a method body. Within
the capability and body sections, each goal is expressed as
a goal name followed by a set of parameters. Also, each
parameter consists of a parameter name and a type.

Figure 2 shows the method editor in the EMeD user in-
terface. There is a list of current methods and buttons for
editing methods. Users can add, delete, or modify the meth-
ods using these buttons. (Other buttons and windows will
be explained later.) Users often create new methods that are
similar to existing ones so the tool has a copy/edit facility.

Every time a new method is defined, the method is
checked for possible parsing errors based on the method rep-
resentation language. If there are interdependencies among
the subparts of a method, they are also used in detecting
errors. For example, if a variable is used but not defined for
the method, the same variable is defined more than once, or

Figure 3: Search Methods in EMeD.

there are unused variables, the system will produce warning
messages. Also, if there were terms (concepts, relations,
or instances) used in a method but not defined in the KB
yet, error messages will be sent to the developer. When the
term definition is obvious, as the verbs used in capabilities,
a definition will be proposed by the tool. In Figure 2, the
small panel in the bottom left corner with the label “EX-
PECT message” displays these errors. Using this method
definition checker, users can detect the local errors earlier,
separating them from other types of errors.

Users can find existing methods related with particular
terms in concepts, relations or instances through the Loom
ontology. The KA tool can retrieve methods that refer to
subconcepts, superconcepts, or a given concept and let the
user create new methods based on related methods. Fig-
ure 3 shows the result from retrieving methods about mov-
ing earth. The system was able to find all the methods
in Figure 1, because narrow-gap and bulldoze-region are
subconcepts of move-earth.

Figure 4 shows relationships among methods based on
how the subgoals of a method can be achieved by other
methods. The trees built from this are called method sub-
method relation trees. There can be multiple trees growing
in the process of building a number of methods when they
are not fully connected. These method-relation trees are
incomplete problem-solving trees to achieve some inter-
mediate subgoal. The (sub)trees should be eventually put
together to build a problem-solving tree for the whole prob-
lem. For example, given these three methods, the system
can build a method-relation tree, as shown in Figure 4.

Method sub-method relation trees can be used to detect
undefined methods based on the subgoals in a method that

Figure 4: A Method Sub-method Relation Tree.

are not achieved by any existing methods. These can be
collected and users can be informed of them. If there
are constraints imposed on the methods to be built, such
as the expectations coming from the methods that invoke
them, then these can be also incorporated. For example, the
method to find the standard bulldozing rate of a step calls
a subgoal to find the standard bulldozing rate of a given
dozer, which is undefined yet. Since the result type of the
given method is a number, the system can expect (through
an interdependency analysis) the same result type for the
undefined method. Figure 5 (bottom window) shows the
capability that the tool proposes for the currently undefined
method — a method to find standard bulldozing rate of a
given military dozer.

In the process of building this method-relation tree, there
can be subgoals whose parameters are not fully specified
because their arguments are subgoals that are not achieved
by any of existing methods. For example, given the method
to estimate the time to narrow gap (the first method in Fig-
ure 1) only (i.e., if M2 and M3 were missing), its subgoal
’divide’ has two parameters with parameter names ’obj’ and
’by’. Because the arguments to divide are the subgoals ’find
dirt-volume of the step’ and ’find standard-bulldozing-rate
for the step’ whose methods would be undefined, the tool
could not fully state the goal. This would be represented as
’divide (obj UNDEFINED) (by UNDEFINED)’. However,
one of the built-in methods in EXPECT has capability of
’divide (obj Number) (by Number)’, and the tool creates
a link between this and the subgoal as a potential inter-
dependency. Users can use this hint to make the potential
interdependency a real one or create other appropriate meth-
ods.

There are other relationships among problem-solving
methods based on their capabilities that the KA tool can
exploit. For example, a hierarchy of the goals based on the
subsumption relations of their goal names and their argu-
ments can be created. In the hierarchy, if a goal is to build a
military bridge, and another goal is to build a kind of mili-
tary bridge, such as an AVLB, then the former subsumes the
latter. This dependency among the goal descriptions of the
methods (called capability tree) is useful in that it allows

Figure 5: A Capability Tree and Undefined Methods.

the user to understand the kinds of sub-problems the current
set of methods can solve. To make their relationships more
understandable, EMeD also computes potential capabilities.
For example if there are super-concepts defined for the pa-
rameters of a capability, a capability with these concepts is
created as a parent of the capability. The capability tree for
the given example methods is in Figure 5 (top window).

Finally, there are user-expected dependencies among the
problem-solving methods, which are usually represented in
comments or by grouping of methods in the files where they
are built. They do not directly affect the system, but they
often become the user’s own instrument to understand the
structure of what they are building. Also, it can be the user’s
own interpretation of additional interdependencies among
methods. EMeD provides a way of organizing methods
into hierarchies and groups, and allows users to provide
documentation for the methods. In Figure 2, the “Move or
Organize Methods” buttons support these functions.

In addition, EMeD can use the expectations derived from
running the problem solver, detecting problems that arise
while attempting to build a complete problem-solving tree.

Preliminary Evaluations
We performed a preliminary evaluation of our approach by
comparing the performance of four subjects in two different
KA tasks from a Workarounds domain. Each subject did
one of the tasks with EMeD and the other task using a
version of EMeD that only allowed them to edit methods
(the buttons to add, delete, or modify methods), but did
not have any additional support from EMeD. Before the
experiment, each subject was given a tutorial of the tools
with simpler scenarios. The scenarios and tools were used
in different orders to reduce the influences from familiarity
with tools or fatigue. Each experiment took several hours,
including the tutorial, and we took detailed transcripts to
record actions performed by the subjects. The subjects had
some previous experience in building EXPECT knowledge

Results Total Time(min) Number of Time/Method (min)
Methods Added

Without EMeD 218 25 8.72

With EMeD 153 24 6.38

Average time savings: 30 %

Table 1: Results from experiments with subjects.

Functionality Number of Times Used

Undefined Methods 23

Editor Error Message 17

Method Sub-method Relation Tree 7

Capability Tree 10

Search Methods 1

Method Organizer 2

Problem Solving Agenda 5

Table 2: Number of times that the different components of
EMeD were used.

bases, but not with EMeD.
In Table 1, the total time is computed by summing the

times with each subject for each tool. The time for each
subject is the time to complete the given task (by creating
a successful problem-solving tree and eliminating errors).
EMeD was able to reduce the development time to 70%
of the time that users needed without it. Subjects built
a comparable number of methods with the different tools.
Note that the subjects were not exposed to the EMeD envi-
ronment before, but were very familiar with the EXPECT
framework. The time savings may be more if the subjects
had more familiarity with EMeD. We had multiple trial ex-
periments with one of the subjects, with slightly different
tasks, and the subject had become more and more skillful,
reducing the time per each action. For these reasons, we
expect that the time reduction with EMeD will be larger
in practice. Also note that there is a practical limit to the
amount of time saved using any KA tool. There is a sig-
nificant amount of time that users spend doing tasks such
as thinking and typing, where a machine can provide little
help. We would like to measure the improvement over the
time actually doing knowledge input, instead of the time to
complete a KA task.

We counted the number of times each component of
EMeD was used during the experiments, as shown in Ta-
ble 2. The list of undefined methods was most useful (used
23 times to build 24 methods) during the experiment, and
the subjects checked it almost every time they created a new
method. The subjects seemed to be comparing what they
expected with the list created by the KA tool, and built new
methods using the suggestions proposed by the system. The
error messages showed after editing each individual method
effectively detected the errors within a method definition,
and was used every time there were local errors in the defi-
nition.

Users looked at the Method Sub-method Relation Tree

but not as many times as what we expected. The subjects
felt the tree was useful but there were too many items shown
for each node, making it hard to read. We are planning to
display items selectively, showing the details only when
they are needed. The Capability Tree was often used to find
some capability description of another method needed while
defining a method body. However, the hierarchical structure
was not so meaningful to the subjects, since sometimes
people choose arbitrary concepts (compute, estimate, etc.)
to describe their capabilities. We are planning to develop a
better way of organizing the methods based on what tasks
they can achieve.

Search Methods and Method Organizer were used very
little during the experiment. Since the size of the KB was
relatively small (about 3 methods were given in the begin-
ning and 6 methods were built for each task), the subjects
were able to see them easily in the editor window. However,
during real KB development, the size of the KB is usually
much larger, and we expect that they will be more useful in
real settings.

With EMeD, the subjects run the problem solver mostly
to check if they had finished their tasks. EMeD was able to
find errors earlier and provide guidance on how they may
fix the problem, filtering out most of the errors. Without
EMeD, the subjects run the problem solver to detect errors,
and ended up spending more time to find the sources of
errors and fix them.

Related Work
There are other KA tools that take advantage of relation-
ships among KB elements to derive expectations. Teireisias
(Davis 1979) uses rule models to capture relationships
among the rules based on their general structure and guide
the user in following that general structure when a new
rule is added that fits a model. Some of the capabilities
of EMeD are similar in spirit to the rule model (e.g., the
method capability tree), and are also used in EMeD to
help developers understand potential dependencies among
the KB elements. Other KA tools (Eriksson et al. 1995;
Birmingham & Klinker 1993; Marcus & McDermott 1989)
also use dependencies between factual knowledge and
problem-solving methods to guide users during knowledge
acquisition. These tools help users to populate and extend
a system that already has a significant body of knowledge,
but they are not designed to help users in the initial stages
of KB development. More importantly, these tools are built
to acquire factual domain knowledge and assume that users
cannot change or add problem-solving knowledge. In this
sense, EMeD is unique because it guides users in adding
new problem-solving methods.

In the field of software engineering, it has been recog-
nized that it is generally better to focus on improving the
process of software development rather than on the output
program itself (Dunn 1994). Our approach embraces this
view and tries to improve the initial phases of KB develop-
ment. Some previous work on using formal languages to
specify knowledge bases (Fensel, Angele, & Studer 1998)
is inspired by software engineering approaches. This work

provides a framework for users to model and capture the
initial requirements of the system, and require that users are
experienced with formal logic. Our approach is comple-
mentary in that it addresses the stage of implementing the
knowledge-based system, and we believe that our formal-
ism is more accessible to users that have no formal training.
Other approaches (Wielinga, Schreiber, & Breuker 1992;
Gaines & Shaw 1993) support users in the initial stages of
development by providing a methodology that can be fol-
lowed systematically to elicit knowledge from experts and
to design the new system. These methodologies can be used
in combination with our approach.

There is also related research in developing tools to
help users build ontologies (Fikes, Farquhar, & Rice 1997;
Terveen & Wroblewski 1990; Clark & Porter 1997). Un-
like our work, these tools do not tackle the issue of using
these ontologies within a problem-solving context. Many
of the research contributions in these tools concern the reuse
of ontologies for new problems, collaborative issues in de-
veloping knowledge bases, and the visualization of large
ontologies. We believe that integrating our approach with
these capabilities will result in improved environments to
support KB creation.

Conclusion
We analyzed the process of KB development to support
KB creation and KB extension, and found a set of expecta-
tions to help KA tools guide users during the development
process. We have classified the sources of errors in the
KB development process based on their characteristics, and
found ways to prevent, detect, and fix errors earlier. These
expectations were derived from the dependencies among
KB elements. Although EMeD aims to provide support for
KB creation, its functionality is also useful for modifying
existing knowledge or populating a KB with instances.

We are now extending the EMeD framework to be able
to derive expectations in solving particular problems. Cur-
rently EMeD computes relationship among the KB compo-
nents regardless of the context. Depending on what problem
episode we are solving, the relationshipsmay show different
patterns, since the problem-solving methods may become
specialized.

In our initial evaluations, EMeD was able to provide use-
ful guidance to users reducing KB development time by
30%. We expect that EMeD will be even more beneficial
for domain experts who don’t have much KA experience.
EMeD also opens the door to collaborative tools for knowl-
edge acquisition, because it captures what KA tasks remain
to be done and that may be done by other users.

Acknowledgments
We gratefully acknowledge the support of DARPA with
grant F30602-97-1-0195 as part of the DARPA High Per-
formance Knowledge Bases Program and with contract
DABT63-95-C-0059 as part of the DARPA/Rome Labo-
ratory Planning Initiative. We would like to thank the mem-
bers of the EXPECT project, Andre Valente, Jim Blythe,

Marcelo Tallis, Surya Ramachandran, and Bill Swartout for
their thoughtful input on this work. We also would like
to thank Kevin Knight for the helpful comments on earlier
drafts.

References
Birmingham, W., and Klinker, G. 1993. Knowledge-
acquisition tools with explicit problem-solving methods.
The Knowledge Engineering Review 8(1):5–25.
Clark, P., and Porter, B. 1997. Building concept represen-
tations from reusable components. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence,
369–376.
Davis, R. 1979. Interactive transfer of expertise: Ac-
quisition of new inference rules. Artificial Intelligence
12:121–157.
Dunn, R. H. 1994. Quality assurance, Encyclopedia of
software engineering. 2.
Eriksson, H.; Shahar, Y.; Tu, S. W.; Puerta, A. R.; and
Musen, M. 1995. Task modeling with reusable problem-
solving methods. Artificial Intelligence 79:293–326.
Feigenbaum, E. 1993. The tiger in the cage. A Plenary
Talk in Fifth Innovative Applications of AI Conference.
Fensel, D.; Angele, J.; and Studer, R. 1998. The knowl-
edge acquisition and representation language KARL.
IEEE Transactions on Knowledge and Data Engineering
10(4):527–550.
Fikes, R.; Farquhar, A.; and Rice, J. 1997. Tools for
assembling modular ontologies in ontolingua. In Proceed-
ings of the Fourteenth National Conference on Artificial
Intelligence, 436–441.
Gaines, B. R., and Shaw, M. 1993. Knowledge acqui-
sition tools based on personal construct psychology. The
Knowledge Engineering Review 8(1):49–85.
Gil, Y., and Melz, E. 1996. Explicit representations of
problem-solving strategies to support knowledge acquisi-
tion. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence.
Gil, Y. 1994. Knowledge refinement in a reflective archi-
tecture. In Proceedings of the Twelfth National Conference
on Artificial Intelligence.
Marcus, S., and McDermott, J. 1989. SALT: A knowl-
edge acquisition language for propose-and-revise systems.
Artificial Intelligence 39(1):1–37.
Swartout, W., and Gil, Y. 1995. EXPECT: Explicit rep-
resentations for flexible acquisition. In Proceedings of the
Ninth Knowledge-Acquisition for Knowledge-Based Sys-
tems Workshop.
Terveen, L. G., and Wroblewski, D. 1990. A collabora-
tive interface for editing large knowledge bases. In Pro-
ceedings of the Eighth National Conference on Artificial
Intelligence, 491–496.
Wielinga, B. J.; Schreiber, A. T.; and Breuker, A. 1992.
KADS: a modelling approach to knowledge acquisition.
Knowledge Acquisition 4(1):5–54.

